Construction of a Normal Basis by Special Values of Siegel Modular Functions

نویسندگان

  • KEIICHI KOMATSU
  • David E. Rohrlich
چکیده

We consider certain abelian extensions K, k1 of Q(e2πi/5) and show by a method of Shimura that a normal basis of K over k1 can be given by special values of Siegel modular functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a unit group generated by special values of Siegel modular functions

There has been important progress in constructing units and Sunits associated to curves of genus 2 or 3. These approaches are based mainly on the consideration of properties of Jacobian varieties associated to hyperelliptic curves of genus 2 or 3. In this paper, we construct a unit group of the ray class field k6 of Q(exp(2πi/5)) modulo 6 with full rank by special values of Siegel modular funct...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

A computation of minimal polynomials of special values of Siegel modular functions

Recently, Fukuda and Komatsu constructed units of a certain abelian extension of Q(exp(2π √ −1/5)) using special values of Siegel modular functions. In this paper, we determine the minimal polynomials of these units.

متن کامل

On the Compactification of Arithmetically Defined Quotients of Bounded Symmetric Domains

In previous papers [13], [2], [16], [3], [ l l ] , the theory of automorphic functions for some classical discontinuous groups F, such as the Siegel or Hilbert-Siegel modular groups, acting on certain bounded symmetric domains X, has been developed through the construction of a natural compactification of X/T , which is a normal analytic space, projectively embeddable by means of automorphic fo...

متن کامل

JACOBI FORMS AND A TWO-VARIABLE p-ADIC L-FUNCTION

Introduction. Consider a Jacobi form φ(τ, z) = ∑ n,r c(n, r)q ζ whose Fourier coefficients c(n, r) are algebraic numbers. Let p be an odd prime. In this paper we associate to φ a Λ-adic p-ordinary form in the sense of [4]. The construction comes from the map Dν introduced in [2], Theorem 3.1. This map associates to a Jacobi form a family of modular forms parametrised by ν. We obtain the two-var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999